56 research outputs found

    The impact of image dynamic range on texture classification of brain white matter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Greylevel Cooccurrence Matrix method (COM) is one of the most promising methods used in Texture Analysis of Magnetic Resonance Images. This method provides statistical information about the spatial distribution of greylevels in the image which can be used for classification of different tissue regions. Optimizing the size and complexity of the COM has the potential to enhance the reliability of Texture Analysis results. In this paper we investigate the effect of matrix size and calculation approach on the ability of COM to discriminate between peritumoral white matter and other white matter regions.</p> <p>Method</p> <p>MR images were obtained from patients with histologically confirmed brain glioblastoma using MRI at 3-T giving isotropic resolution of 1 mm<sup>3</sup>. Three Regions of Interest (ROI) were outlined in visually normal white matter on three image slices based on relative distance from the tumor: one peritumoral white matter region and two distant white matter regions on both hemispheres. Volumes of Interest (VOI) were composed from the three slices. Two different calculation approaches for COM were used: i) Classical approach (CCOM) on each individual ROI, and ii) Three Dimensional approach (3DCOM) calculated on VOIs. For, each calculation approach five dynamic ranges (number of greylevels N) were investigated (N = 16, 32, 64, 128, and 256).</p> <p>Results</p> <p>Classification showed that peritumoral white matter always represents a homogenous class, separate from other white matter, regardless of the value of N or the calculation approach used. The best test measures (sensitivity and specificity) for average CCOM were obtained for N = 128. These measures were also optimal for 3DCOM with N = 128, which additionally showed a balanced tradeoff between the measures.</p> <p>Conclusion</p> <p>We conclude that the dynamic range used for COM calculation significantly influences the classification results for identical samples. In order to obtain more reliable classification results with COM, the dynamic range must be optimized to avoid too small or sparse matrices. Larger dynamic ranges for COM calculations do not necessarily give better texture results; they might increase the computation costs and limit the method performance.</p

    Texture analysis of magnetic resonance images of rat muscles during atrophy and regeneration

    Get PDF
    OBJECTIVES: The goals of the current study were (i) to introduce texture analysis on magnetic resonance imaging (MRI-TA) as a noninvasive method of muscle investigation that can discriminate three muscle conditions in rats; these are normal, atrophy and regeneration; and (ii) to show consistency between MRI-TA results and histological results of muscle type 2 fibers\u27 cross-sectional area. METHOD: Twenty-three adult female Wistar rats were randomized into (i) control (C), (ii) immobilized (I) and (iii) recovering (R) groups. For the last two groups, the right hind limb calf muscles were immobilized against the abdomen for 14 days; then, the hind limb was remobilized only for the R group for 40 days. At the end of each experimental period, MRI was performed using 7-T magnet Bruker Avance DRX 300 (Bruker, Wissembourg); T1-weighted MRI acquisition parameters were applied to show predominantly muscle fibers. Rats were sacrificed, and the gastrocnemius muscle (GM) was excised immediately after imaging. (A) Histology: GM type 2 fibers (fast twitch) were selectively stained using the adenosine triphosphatase (ATPase) technique. The mean cross-sectional areas were compared between the three groups. (B) Image analysis: regions of interest (ROIs) were selected on GM MR images where statistical methods of texture analysis were applied followed by linear discriminant analysis (LDA) and classification. RESULTS: Histological analysis showed that the fibers\u27 mean cross-sectional areas on GM transversal sections represented a significant statistical difference between I and C rats (ANOVA, P&lt;.001) as well as between R and I rats (ANOVA, P&lt;.01), but not between C and R rats. Similarly, MRI-TA on GM transversal images detected different texture for each group with the highest discrimination values (Fisher F coefficient) between the C and I groups, as well as between I and R groups. The lowest discrimination values were found between C and R groups. LDA showed three texture classes schematically separated. CONCLUSION: Quantitative results of MRI-TA were statistically consistent with histology. MRI-TA can be considered as a potentially interesting, reproducible and nondestructive method for muscle examination during atrophy and regeneration

    Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions

    Get PDF
    Texture analysis (TA) of histological images has recently received attention as an automated method of characterizing liver fibrosis. The colored staining methods used to identify different tissue components reveal various patterns that contribute in different ways to the digital texture of the image. A histological digital image can be represented with various color spaces. The approximation processes of pixel values that are carried out while converting between different color spaces can affect image texture and subsequently could influence the performance of TA. Conventional TA is carried out on grey scale images, which are a luminance approximation to the original RGB (Red, Green, and Blue) space. Currently, grey scale is considered sufficient for characterization of fibrosis but this may not be the case for sophisticated assessment of fibrosis or when resolution conditions vary. This paper investigates the accuracy of TA results on three color spaces, conventional grey scale, RGB, and Hue-Saturation-Intensity (HSI), at different resolutions. The results demonstrate that RGB is the most accurate in texture classification of liver images, producing better results, most notably at low resolution. Furthermore, the green channel, which is dominated by collagen fiber deposition, appears to provide most of the features for characterizing fibrosis images. The HSI space demonstrated a high percentage error for the majority of texture methods at all resolutions, suggesting that this space is insufficient for fibrosis characterization. The grey scale space produced good results at high resolution; however, errors increased as resolution decreased

    Texture analysis of MR images of patients with Mild Traumatic Brain Injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA).</p> <p>Methods</p> <p>We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the levels of mesencephalon, corona radiata and centrum semiovale and in different segments of corpus callosum (CC) which have been found to be sensitive to damage. The same procedure was carried out on a control group of ten healthy volunteers. Patients' TA data was compared with the TA results of the control group comparing the amount of statistically significantly differing TA parameters between the left and right sides of the cerebral tissue and comparing the most discriminative parameters.</p> <p>Results</p> <p>There were statistically significant differences especially in several co-occurrence and run-length matrix based parameters between left and right side in the area of mesencephalon, in cerebral white matter at the level of corona radiata and in the segments of CC in patients. Considerably less difference was observed in the healthy controls.</p> <p>Conclusions</p> <p>TA revealed significant changes in texture parameters of cerebral tissue between hemispheres and CC segments in TBI patients. TA may serve as a novel additional tool for detecting the conventionally invisible changes in cerebral tissue in MTBI and help the clinicians to make an early diagnosis.</p

    Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization

    Get PDF
    Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images

    Image Texture Characterization Using the Discrete Orthonormal S-Transform

    Get PDF
    We present a new efficient approach for characterizing image texture based on a recently published discrete, orthonormal space-frequency transform known as the DOST. We develop a frequency-domain implementation of the DOST in two dimensions for the case of dyadic frequency sampling. Then, we describe a rapid and efficient approach to obtain local spatial frequency information for an image and show that this information can be used to characterize the horizontal and vertical frequency patterns in synthetic images. Finally, we demonstrate that DOST components can be combined to obtain a rotationally invariant set of texture features that can accurately classify a series of texture patterns. The DOST provides the computational efficiency and multi-scale information of wavelet transforms, while providing texture features in terms of Fourier frequencies. It outperforms leading wavelet-based texture analysis methods

    Non-Hodgkin lymphoma response evaluation with MRI texture classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To show magnetic resonance imaging (MRI) texture appearance change in non-Hodgkin lymphoma (NHL) during treatment with response controlled by quantitative volume analysis.</p> <p>Methods</p> <p>A total of 19 patients having NHL with an evaluable lymphoma lesion were scanned at three imaging timepoints with 1.5T device during clinical treatment evaluation. Texture characteristics of images were analyzed and classified with MaZda application and statistical tests.</p> <p>Results</p> <p>NHL tissue MRI texture imaged before treatment and under chemotherapy was classified within several subgroups, showing best discrimination with 96% correct classification in non-linear discriminant analysis of T2-weighted images.</p> <p>Texture parameters of MRI data were successfully tested with statistical tests to assess the impact of the separability of the parameters in evaluating chemotherapy response in lymphoma tissue.</p> <p>Conclusion</p> <p>Texture characteristics of MRI data were classified successfully; this proved texture analysis to be potential quantitative means of representing lymphoma tissue changes during chemotherapy response monitoring.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore